Lesson 1: Introduction to Control Systems Technology

ET 438a
Automatic Control Systems Technology

Learning Objectives

After this presentation you will be able to:
$>$ Explain the function of an automatic control system.
> Identify a block diagram representation of a physical system
> Explain the difference between an open loop and closed loop control system
> Define a transfer function and compute the gain for sinusoidal input/output cases.
> Reduce block diagram systems using algebra.

The Control Problem

Maintain a variable of process at a desired value while rejecting the effects of outside disturbances by manipulating another system variable.

Examples:

Heating and Cooling homes and offices Automobile cruise control
Hold the position of a mechanical linkage
Maintain level in a tank
$\mathrm{Q}_{\text {out }}$ depends on h
If $Q_{\text {out }}=Q_{\text {in }}, h$ constant
$\mathrm{Q}_{\text {out }}>\mathrm{Q}_{\text {in }}$, tank empties
$\mathrm{Q}_{\text {out }}<\mathrm{Q}_{\text {in }}$, tank overflows

Basic Subsystems of Control

Feedback Control Subsystems

Automatic Control Systems

Use sensors and analog or digital electronics to monitor and adjust system

Block Diagrams

Automatic control systems use mathematical descriptions of subsystems to reduce complex components to inputs and outputs

Signals flow between components in system based on arrow direction

Typical Component Block Diagrams

7

Transfer Functions

Transfer function - ratio of the output to the input of a control system component. Generally a function of frequency and time.

Convert to phasors and divide

$$
\mathrm{G}=\frac{\overline{\mathrm{B}}}{\overline{\mathrm{~A}}}=\frac{\text { OutputSignal }}{\text { InputSignal }}=\frac{\mathrm{B} \angle \beta}{\mathrm{~A} \angle \alpha}=\frac{\mathrm{B}}{\mathrm{~A}} \angle \beta-\alpha
$$

Phase shift related to time delay

Transfer Functions

Examples

Example 1-1: Find transfer function of temperature sensor in block diagram

Example 1-2: a current-to-voltage converter takes an input of $17.5 \angle 30^{\circ} \mathrm{mA}$ and produces an output of $8.35 \angle 37^{\circ} \mathrm{V}$ Determine the transfer function gain and sketch the block diagram.
$\mathrm{I}_{\text {in }}=17.5 \angle 30^{\circ} \mathrm{mA}$
$\mathrm{V}_{\mathrm{o}}=8.35 \angle 37^{\circ} \mathrm{V}$
$\overline{\mathrm{G}}=\frac{\text { OutputSignal }}{\text { InputSignal }}=\frac{\overline{\mathrm{V}}_{\mathrm{o}}}{\overline{\mathrm{I}}_{\text {in }}}=\frac{8.35 \angle 37^{\circ} \mathrm{V}}{17.5 \angle 30^{\circ} \mathrm{mA}}=\mathrm{V} / \mathrm{mA}$

$\overline{\mathrm{G}}=0.477 \angle 7^{\circ} \mathrm{V} / \mathrm{mA}$
9

Open-Loop Control

Open loop control modifies output based on predetermined control values. There is no actual measurement of controlled quantity.

Closed Loop Control

Closed loop control modifies output based on measured values of the control variable. Measured value compared to desired value and used to maintain desired value when disturbances occur. Closed loop control uses feedback of output to input.

11 lesson1et438a.pptx

Closed Loop Control

Disturbances: Up hill/ down hill
Head wind/ tail wind

Generalized Closed Loop Control

Block Diagram of Servo Control-Example Positioning Systems

Generalized Closed Loop Control

Find overall transfer function using signal flow algebra

$$
(\text { Input })(\text { Gain })=(\text { Output })
$$

For servo control Find $\frac{C}{R}$
(1) $\mathrm{E}=\mathrm{R}-\mathrm{C}_{\mathrm{m}}$
(3) $\mathrm{H}=\frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{C}} \Rightarrow \mathrm{C} \cdot \mathrm{H}=\mathrm{C}_{\mathrm{m}}$
2) $\mathrm{G}=\frac{\mathrm{C}}{\mathrm{E}} \Rightarrow \mathrm{E} \cdot \mathrm{G}=\mathrm{C}$

$$
\begin{aligned}
& 13 \mathrm{E}=\mathrm{R}-\mathrm{C}_{\mathrm{m}} \mathrm{H} \\
& (\mathrm{R}-\mathrm{C} \cdot \mathrm{H}) \cdot \mathrm{G}=\mathrm{C}
\end{aligned}
$$

Overall Transfer Function-Servo Control Find $\frac{C}{R}$
 $$
\begin{aligned} & (\mathrm{R}-\mathrm{C} \cdot \mathrm{H}) \cdot \mathrm{G}=\mathrm{C} \\ & \mathrm{R} \cdot \mathrm{G}-\mathrm{C} \cdot \mathrm{H} \cdot \mathrm{G}=\mathrm{C} \end{aligned}
$$
 $$
\mathrm{R} \cdot \mathrm{G}=\mathrm{C}+\mathrm{C} \cdot \mathrm{H} \cdot \mathrm{G}
$$
 Add CHG to both sides
 $$
\mathrm{R} \cdot \mathrm{G}=\mathrm{C} \cdot(1+\mathrm{G} \cdot \mathrm{H}) \quad \text { Factor } \mathrm{C} \text { out of right hand side }
$$
 $$
\frac{\mathrm{R} \cdot \mathrm{G}}{(1+\mathrm{G} \cdot \mathrm{H})}=\mathrm{C}
$$
 Divide both sides by (1+GH)
 $$
\frac{\mathrm{G}}{(1+\mathrm{G} \cdot \mathrm{H})}=\frac{\mathrm{C}}{\mathrm{R}}
$$
 Divide both sides by R

Generalized Closed Loop Control

Block Diagram of Process Control-Example Chemical Reactors

Overall Transfer Function- Process Control

Find overall transfer function of process control using signal flow algebra
Series blocks multiple $\quad G_{c}=\frac{V}{E} \quad G_{m}=\frac{M}{V} \quad G_{p}=\frac{C}{M}$

$$
\begin{gathered}
G=G_{c} \cdot G_{m} \cdot G_{p}=\left(\frac{V}{E}\right) \cdot\left(\frac{M}{V}\right) \cdot\left(\frac{C}{M}\right) \\
G=\left(\frac{C}{E}\right)
\end{gathered}
$$

Find overall transfer function $\mathrm{C}_{\mathrm{m}} / \mathrm{SP}$ C not directly measurable in process control

Overall Transfer Function- Process Control

As before

$$
\begin{array}{ll}
\mathrm{E}=\mathrm{SP}-\mathrm{C}_{\mathrm{m}} \quad \mathrm{C}_{\mathrm{m}}=\mathrm{H} \cdot \mathrm{C} \Rightarrow & \frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{H}}=\mathrm{C} \\
\mathrm{G} \cdot \mathrm{E}=\mathrm{C} & \text { Substitute in for } \mathrm{E} \\
\mathrm{G} \cdot\left(\mathrm{SP}-\mathrm{C}_{\mathrm{m}}\right)=\mathrm{C} & \text { Substitute in for } \mathrm{C} \text { eliminate it } \\
\mathrm{G} \cdot\left(\mathrm{SP}-\mathrm{C}_{\mathrm{m}}\right)=\frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{H}} & \text { Multiple both sides by } \mathrm{H} \\
\mathrm{G} \cdot \mathrm{H} \cdot\left(\mathrm{SP}-\mathrm{C}_{\mathrm{m}}\right)=\mathrm{C}_{\mathrm{m}} & \text { Multiple L.H. side by } \mathrm{GH} \\
\mathrm{G} \cdot \mathrm{H} \cdot \mathrm{SP}-\mathrm{G} \cdot \mathrm{H} \cdot \mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{m}} & \text { Add } \mathrm{GHC}_{\mathrm{m}} \text { to both sides } \\
\mathrm{G} \cdot \mathrm{H} \cdot \mathrm{SP}=\mathrm{C}_{\mathrm{m}}+\mathrm{G} \cdot \mathrm{H} \cdot \mathrm{C}_{\mathrm{m}} & \text { Factor } \mathrm{C}_{\mathrm{m}} \text { from right side } \\
\mathrm{G} \cdot \mathrm{H} \cdot \mathrm{SP}=\mathrm{C}_{\mathrm{m}} \cdot(1+\mathrm{G} \cdot \mathrm{H}) & \text { Divide both sides by }(1+\mathrm{GH}) \\
\frac{\mathrm{G} \cdot \mathrm{H} \cdot \mathrm{SP}}{1+\mathrm{G} \cdot \mathrm{H}}=\mathrm{C}_{\mathrm{m}} & \text { Divide both sides by } \mathrm{SP} \\
\frac{\mathrm{G} \cdot \mathrm{H}}{1+\mathrm{G} \cdot \mathrm{H}}=\frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{SP}} &
\end{array}
$$

Control System Drawings

Industrial system standard ANSI/ISA-S5.1-1984 Uniform designation for Instruments, instrument systems and control.

General Instrument
Symbol

First ID Letter	Following ID Letter
A = Analysis	C = Controller
L = Level	I = Indicator
T = Temperature	R=Recorder
	T=Transmitter
	V = Valve
	$Y=$ Relay/Converter

4-20 mA electric current

Filled System
Capillary

Control System Drawings

Linear and Non-linear Response

Linear transfer functions give proportional outputs. In this case the factor is 2

Non-linear Response

> Saturation non-linearity typical of practical systems that have physical limits. Amplifiers, control valves

Other Non-Linearities

Typical in magnetic circuit and in instrumentation transducers

Non-linearities cause distortion in sine waves response that is not proportional to inputs value for all signal values.

Block Diagram Simplifications

Block diagram at left simplifies to the above. Can use this to reduce multiple loops into one Block.

Also remember that blocks in series multiply

$$
\mathrm{G}=\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}
$$

Block Diagram Simplification Example

$\frac{\mathrm{C}_{1}}{\mathrm{R}_{1}}=\frac{\mathrm{G}_{2}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}} \quad$ Reduce the inner loop
$\mathrm{H}=\mathrm{H}_{2} \cdot \mathrm{H}_{3} \quad$ Combine outer feedback block

Combine reduced inner loop with remaining forward gain blocks

25 lesson1et438a.pptx

Block Diagram Simplification Example (1)

$\mathrm{G}=\mathrm{G}_{1} \cdot\left[\frac{\mathrm{G}_{2}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right] \cdot \mathrm{G}_{3}=\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right] \quad$ Compute the value of G
$\frac{\mathrm{C}}{\mathrm{R}}=\frac{\mathrm{G}}{1+\mathrm{G} \cdot \mathrm{H}}=\frac{\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right]}{1+\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right] \cdot \mathrm{H}_{2} \cdot \mathrm{H}_{3}}$
Substitute the values of G and H into formula and simplify

Block Diagram Simplification Example (2)

$$
\frac{\mathrm{C}}{\mathrm{R}}=\frac{\mathrm{G}}{1+\mathrm{G} \cdot \mathrm{H}}=\frac{\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right]}{1+\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right] \cdot \mathrm{H}_{2} \cdot \mathrm{H}_{3}}
$$

Multiply top and bottom of ratio by $\left(1+\mathrm{G}_{2} \mathrm{H}_{1}\right)$ and simplify

$$
\begin{aligned}
& \frac{\mathrm{C}}{\mathrm{R}}=\frac{\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right] \cdot\left(1+\mathrm{G} \cdot \mathrm{H}_{1}\right)}{\left(1+\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}}\right] \cdot \mathrm{H}_{2} \cdot \mathrm{H}_{3}\right) \cdot\left(1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}\right)}=\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{\left(1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}\right)+\left(1+\mathrm{G}_{1}-H_{1}\right) \cdot\left[\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \cdot \mathrm{H}_{2} \cdot \mathrm{H}_{3}}{1+\mathrm{G}_{2} \cdot H_{1}}\right]} \\
& \frac{\mathrm{C}}{\mathrm{R}}=\frac{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3}}{1+\mathrm{G}_{2} \cdot \mathrm{H}_{1}+\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \cdot \mathrm{H}_{2} \cdot \mathrm{H}_{3}} \quad \text { Answer } \\
& \text { Reduced } \\
& \text { block }
\end{aligned}
$$

27

End Lesson 1: Introduction to Control Systems Technology

ET 438a
Automatic Control Systems Technology

